On the intersection of Padovan, Perrin sequences and Pell, Pell-Lucas sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pell–Padovan-circulant sequences and their applications

This paper develops properties of recurrence sequences defined from circulant matrices obtained from the characteristic polynomial of the Pell–Padovan sequence. The study of these sequences modulo m yields cyclic groups and semigroups from the generating matrices. Finally, we obtain the lengths of the periods of the extended sequences in the extended triangle groups E(2, n, 2), E(2, 2, n) and E...

متن کامل

On Pell, Pell-Lucas, and balancing numbers

In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.

متن کامل

A Note Involving Two-by-Two Matrices of the k-Pell and k-Pell-Lucas Sequences

We use a diagonal matrix for getting the Binet’s formula for k-Pell sequence Also the n power of the generating matrix for k-Pell-Lucas sequence is established and basic properties involving the determinant allow us to obtain its Cassini’s identity. Mathematics Subject Classification: 11B37, 05A15, 11B83.

متن کامل

Sequences related to the Pell generalized equation

We consider sequences of the type An = 6An−1 − An−2, A0 = r, A1 = s (r and s integers) and show that all sequences that solve particular cases of the Pell generalized equation are expressible as a constant times one of four particular sequences of the same type. Let α = 3 + 2 √ 2, β = 3 − 2 √ 2 be the roots of the polynomial x − 6x+ 1. Note that α+β = 6, αβ = 1, α−β = 4 √ 2. Also let γ = 1+ √ 2...

متن کامل

Powers in Recurrence Sequences: Pell Equations

In this paper, we present a new technique for determining all perfect powers in so-called Pell sequences. To be precise, given a positive nonsquare integer D, we show how to (practically) solve Diophantine equations of the form x −Dy = 1 in integers x, y and n ≥ 2. Our method relies upon Frey curves and corresponding Galois representations and eschews lower bounds for linear forms in logarithms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae et Informaticae

سال: 2021

ISSN: 1787-6117

DOI: 10.33039/ami.2021.03.014